18th IWS/4th TRCG Forum, 2023 ESCAP/WMO Typhoon Committee

[Topic I:Artificial intelligence for tropical cyclones related applications] DEVELOPMENT OF NEW RAINFALL PRODUCTS BY ADAPTING AI TECHNOLOGY TO HIMAWARI-8

Taichi Tebakari, Ph.D.

Professor

Department of Civil and Environmental Engineering

Director

Asia Water Science Research Center

Chuo University

Current status of typhoon forecasting/a review

What is required to develop a global model widge into Act

- Improved accuracy in forecasting the path of typhoons three days ahead
 - Timelines for large-scale flooding in municipalities, etc., require precise widearea evacuation, etc., with a narrowing of the area about three days in advance.
 - ✓ Improved typhoon forecast error of about 100 km for the next 3 days (currently over 200 km)
 - ✓ Rain and storm surge forecasts associated with typhoons lose value when path forecasts are off, so the first and most important step is to improve the accuracy of path forecasts
- Provide "more appropriate boundary values" for meso-models
- Prerequisites: Ensuring stable operations, cost of proper operation and development, reliability of daily forecasts.

Changes in the Accuracy of Typhoon Track中央大学 Prediction over the Past Decade (International comparison)

- The accuracy of typhoon path prediction by numerical forecast centers in various countries continues to improve (Yamaguchi, 2017), while the improvement trend has slowed in recent years.
- Top center accuracy has been stagnant for the past decade, and breakthroughs are needed.

- ✓ Northwest Pacific Region
- ✓ 72-hour forecast
- ✓ Noncommon sample

Key Issues in Forecast Model Development

- I. Improved parameterization
 - \checkmark Various previous studies suggest that the impact is significant.
 - ✓ First estimate to further exploit the potential of the observed data (performance in representing the phenomenon)
 - \checkmark Addressing various problems (gray zone issues) caused by higher resolution
- Upgrading to higher resolution
 ✓TYMIP (Nakano et al., 2017, GMD) suggests the effect of higher resolution (7 km)
 ✓Horizontal grid spacing of 10 km or less by 2030 (JMA)
- 3. Evaluation and verification methods, progress in understanding error generation mechanisms, etc.
 - ✓ Establishment of a method for verifying typhoon structure and winds over the ocean flowing through the typhoon
 - \checkmark Analysis of causes of path prediction errors
 - Predictability studies (shift to probabilistic forecasting once the limitations of deterministic forecasting are understood)

Issues in the Use of Satellite Data for Numerical Forecasting

Satellite data for numerical forecasting

Creation of initial condition for numerical forecast (data assimilation)

- $\checkmark \mathsf{Objective:} \mathsf{To} \ \mathsf{improve} \ \mathsf{the} \ \mathsf{accuracy} \ \mathsf{of} \ \mathsf{initial} \ \mathsf{condition}$
- ✓ Brightness temperature, atmospheric tracking wind, GNSS signal delay, etc. are used for assimilation.
- Creation of boundary condition for numerical forecast
 Sea surface temperature, sea ice, snow cover, ground albedo, aerosols, etc.
- Model validation

Observations used for numerical forecasting *#大学

Direct Observation

Unattended buoy for marine meteorological observation

Aircraft observation

Remote sensing and remote observation

Quasi-observation

GNSS

Observations used for numerical forecasting *#大学

Geostationary Orbit Satellite

Operational for JMA (Low Orbit Satellite)

Observations used for numerical forecasting wersity

Earth observation satellite (Low Orbit Satellite)

Distribution of assimilation observation data Action -

JMA Aug., I, 2020 UTC

Example

Use of Satellite Data in Numerical Forecasting by Maxim Action-Type Satelite/Sensor Global analysis Monomole suctories

Туре	Satelite/Sensor	Global analysis	Mesoscale analysis	Local analysis	
	NOAA15,18,19, Metop-A,-B,-C(※),Aqua/AMSU-A	Brightness temperature	Brightness temperature	Brightness temperature	
Mieroweye counder	NOAA18,19,Metop-A,-B,-C(%)/MHS	Brightness temperature	Brightness temperature	Brightness temperature	
Microwave sounder	DMSP-F17,18/SSMIS	Brightness temperature	-	-	
	Suomi-NPP,NOAA20/ATMS	Brightness temperature	-	-	
	Megha-Tropiques/SAPHIR	Brightness temperature	-	-	
	Aqua/AIRS	Brightness temperature	—	—	
Infrared sounder	Metop-A,B/IASI	Brightness temperature	-	—	
	Suomi-NPP,NOAA20/CrIS	Brightness temperature	—	—	
	DMSP-F17,18/SSMIS	Brightness temperature	Brightness temperature Precipitation intensity	Brightness temperature	
Miarowaya imagar		Duizhtu e e temene u eteme	Brightness temperature	Brightness temperature	
Microwave imager	GCOW-W/ AMSR2	Brightness temperature	Precipitation intensity	Soil moisture content	
	GPM-core/GMI	Brightness temperature	Brightness temperature Precipitation intensity	Brightness temperature	
		Brightness temperature	Brightness temperature	Brightness temperature	
	Himawari-8	of clear sky, Wind	of clear sky, Wind	of clear sky, Wind	
	GOES-16	Brightness temperature of clear sky, Wind	_	_	
Visible/Infrared imager	Meteosat-8,11	Brightness temperature of clear sky, Wind	_	_	
	NOAA15,18,19,Metop-A,-B/AVHRR	Atmospheric wind	—	—	
	Aqua,Terra/MODIS	Atmospheric wind	—	—	
	LEOGEO composite image	Atmospheric wind	-	-	
Conttonentor	Metop-A,-B,-C(%)/ASCAT	Wind above sea	Wind above sea	Soil moisture content	
Scatterometer	ScatSat-1/OSCAT	Wind above sea	-	-	
	Metop-A,-B/GRAS	Refractive angle	Refraction factor	-	
GNSS accultation	TerraSAR-X/IGOR	Refractive angle	Refraction factor	-	
	TanDEM-X/IGOR	-	Refraction factor	-	
	COSMIC/IGOR	Refractive angle	Refraction factor	-	
Precipitaion radar	GPM/DPR	-	Relative humidity	—	

(※) Metop-C/AMSU-A, MHS, ASCAT are used for global analysis.

Challenges in assimilating and using satellite data

•Support for new satellite data and upgrading of existing data processing

- \checkmark Gathering the latest information on new satellites and sensors
- ✓ Detailed understanding of data characteristics (Development of quality control and bias correction process, setting of observation error)
- ✓ Assimilation impact experiments and evaluations (Observing System Experiment (OSE) is the basis (global → meso → local analysis))

Early and stable data acquisition

✓ Request and build a fast and stable observation, communication, and processing system

- Multiple pathways: GTS, Internet, telecommunications satellites
- Utilization of DBNet (direct reception network)
- \checkmark Early acquisition of new data

Cooperation with international satellite processing and data assimilation centers

Brightness temperature data types and main issues

学

Туре	Satelite/Sensor	Assimilation	Short-term issues	Medium- long-term issues			
Microwave Temperature sounder	AMSU-A, ATMS, SSMIS, MWTS2, MTVZA-GY	Assimilating the clear sky	New Sensor Use of unused channels	Global assimilation Lower channel land assimilation Small satellite			
Microwave Water vapour sounder	MHS, ATMS, GMI, SSMIS, SAPHIR, MWHS2, MTVZA- GY	Global assimilation (patially)	All-day assimilation (remaining)	Application of global assimilation to meso and local analysis Small Satellite			
Microwave imager	AMSR2, GMI, SSMIS, WindSat, MWRI, MTVZA-GY	Global assimilation (patially)	New Sensor	Application to meso and local analysis			
Hyperspectral Infrared sounder	IASI, AIRS, CrIS, HIRAS, IKFS2, GIIRS	Assimilating the clear sky Temperature channel	More Channels Addition of water vapor channel	Application to meso and local analysis New sensor Interchannel error correlation Global assimilation			
Geostationary Satellite Infrared brightness temperature (CSR,ASR)	Himawari, Meteosat, GOES, GK2A	Assimilating the clear sky, Assimilation of terrestrial data for ch with sensitivity to lower layers	New Sensor Satellite switchover	Use of CO2 Channels Global assimilation			
Common type		Outer Loop Hybrid assimilation (global) Variational Bias Correction (meso)	Observation error Observation density Optimization RTTOV update Model layer change support	Observation error Observation density Optimization Observation error phase function			

Satellite data use issues that should promote collaboration

Assimilative use of new satellite data

- ✓ Hyperspectral infrared sounder
 - Global trend toward geostationary satellites (GIIRS/FY-4A (China), IRS/MTG-S (Europe))
 - Increase in the number and performance of sensors onboard polar-orbiting satellites (HIRAS/FY-3D (China), IKFS-2/Meteor-M N2 series (Russia), IASI-NG (France))
- ✓ Doppler Wind Rider : High assimilation impact in ECMWF, operational used
 - ALADIN/Aeolus (Europe)
- \checkmark GNSS occultation observation
 - Commercialization using small satellites by private companies
- \checkmark Microwave observation by small satellite
 - TROPICS (USA)
 - U.S. agencies also participate in data evaluation
- ✓Long elliptical orbit (Tundra) satellite

Knowledge of international trends, data quality and usage is important
 Selection of satellite data to be assimilated and used with priority

Satellite data use issues that should promote collaboration Knowledge into Action

- Advanced data assimilation (pre)processing
 - \checkmark Global assimilation of brightness temperature

Microwave

- Under operation by JMA (global analysis only, mainly water vapor CH): AMSR2/GCOM-W, GMI/GPM, SSMIS/DMSP, MHS/NOAA, MHS/Metop, WindSat/Coriolis, MWRI/FY-3C, SSMIS/DMSP, MHS/NOAA, MHS/Metop, WindSat/Coriolis, MWRI/FY-3C
- Meso- and local analysis and global assimilation of temperature sounders are not yet available.

□Infrared

- Assimilation of Himawari 8 data (under developing)
- ✓Use of microwave radiometers and hyperspectral infrared sounders on land
 - Utilization of Dynamic Emissivity (Microwave)
- ✓ Observation error optimization (observation error correlation)
- ✓ Assimilation and utilization of high-resolution and high-frequency observation data
- ✓ Polar-orbiting satellite hyperspectral infrared sounder (IASI, CrIS)
 - Not yet fully utilizing the data.

Knowledge of quality control, bias correction, and observation error settings are important

Key Issues

Assimilative use of new satellite data

 \checkmark Sharing of the world's most advanced new satellite and sensor data

 \checkmark Knowledge of data quality and usage

 \checkmark Selection of satellite data with high assimilation impact and to be prioritized for use

Advanced data assimilation (pre)processing

 \checkmark Detailed understanding of data characteristics

- Characterization of data that are difficult to assimilate and use (land, sea ice, cloud area data, etc.)
- Quality control, bias correction, evaluation of observation errors
- \checkmark Joint development of new quality control, bias correction, and observation error setting methods
 - Observation data affected by cloud coverage and ground surface
 - Assimilation and utilization of high-resolution and high-frequency observation data, etc.

✓ Development and accuracy verification of observation operators (radiative transfer model (RTTOV), etc.)

Hagibis, 2019 (Saffir-Simpson hurricane wind scale; SSHWS)

Geostationary Meteorological Satellite Himawari-8/9

20

Global Weather Satellite Network

Himawari-8/9

	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	
Himawari 8	S	Satellite Manufacturing and launch Observation								Standby												
Himawari 9	ari 9 Satellite Manufacturing and launch Standby										Observ	ation			S	tandby						

Overview of Observation Functions

Himawari Standard Data

Wave length (µm)	Band numbe r	An example of a possible application Example					
0.47	1	Vegetation, aerosol					
0.51	2	Vegetation					
0.64	3	Vegetation					
0.86	4	Vegetation, aerosol					
1.6	5	classification of the sutras and their teachings					
2.3	6	cloud radius					
3.9	7	Lower clouds and fog					
6.2	8	upper water vapor					
6.9	9	upper-middle level water vapor					
7.3	10	mid-level water vapor					
8.6	11	SO ₂					
9.6	12	Total ozone					
10.4	13	Cloud Top Information					
11.2	14	sea surface water temperature					
12.4	15	sea surface water temperature					
13.3	16	Cloud top altitude					

Observational intervals and areas

Development of Satellite Rainfall Products using Himawari Meteorological Satellite Data

2 Purpose

The

goal Development of satellite rainfall products that can be used as quantitative values contributing to hydrological analysis in the Asia-Pacific region

I. Creating a deep learning model in Japan, which has high-quality weather data

2. Apply the created deep learning model to the Himawari observation area

Input data

Brightness temperature data (Observation data of Himawari)

Spatial resolution : 2km **Observation frequency : 10min**

Himawari 8/9 gridded data (CEReS@Chiba univ. Japan)

latitude and	longitude	National Synthetic Radar GPV Ikm Precipitation Intensity Data (JMA)					
Elevation	MERIT DEM (Tokyo univ. Japan)	Supervised dataSpatial resolution : 1 km Observation frequency : 1					
Geographic	information data	Rainfall data(supervised data)				
npul uala							

2 Data

Himawari Standard Data

Wave length (µm)	Band numbe r	An example of a possible application Example
0.47	1	Vegetation, aerosol
0.51	2	Vegetation
0.64	3	Vegetation
0.86	4	Vegetation, aerosol
1.6	5	classification of the sutras and their teachings
2.3	6	cloud radius
3.9	7	Lower clouds and fog
6.2	8	upper water vapor
6.9	9	upper-middle level water vapor
7.3	10	mid-level water vapor
8.6	11	SO ₂
9.6	12	Total ozone
10.4	13	Cloud Top Information
11.2	14	sea surface water temperature
12.4	15	sea surface water temperature
10.0	10	

Observational intervals and areas

Radar reflex factor

5 Estimation of reflection factor

Exclusion of non-cloud areas and redistribution using probabilistic matching method

5 Reflection factor estimation

Mathematical model

Previous studies

 $R = w_1 + w_2 \exp[w_3 (T_b + w_4)^{w_5}]$ Yang Hong et al.(2004)

R: precipitation intensity(mm/h)

This study

 T_b : brightness temperature(K) w_i : parameters

 $Z = w_1 + w_2 \exp[w_3 (T_b + w_4)^{w_5}]$

Z: radar reflection factor(mm^6/m^3)

 T_b : brightness temperature(K) w_i : parameters

5 Reflection factor estimation

35.6°N

35.4°N

140 2°E 140 4°

35.6°N

35.4°N

140°E 140.2°E 140.4°E

35.6°N

35 4°N

35.2°N

35.6°N

35.4°N

140.2°E 140.4°

35.8°

35.6°N

35.49

35.6°N

35.4°N

140 2°F 140 4°F

Himawari Standard Data

35.6°N

35.4°N

140.2°E 140.4°

35.6°N

35.4%

5 Reflection factor estimation

Reflection factor estimation results

Band07

Band08

Band 13

Band09

BandII

Band 12

Band 16

5 Precipitation intensity estimation

	Band07	Bnad08	Band09	Band 10	BandII	Band 12	Band I 3	Band I 4	Band I 5	Band 16
RMSE (mm/h)	5.44	47.05	93.12	67.14	45.72	17.89	34.35	40.27	22.31	150.55
MAE (mm/h)	2.82	2.68	3.51	3.15	8.08	2.19	6.96	7.54	6.08	15.00

Nadaraya Watson

10 Precipitation intensity estimation

Probabilistic matching method

Nadaraya-Watson estimator

 $E(Y|X = x) = \frac{\sum_{i=1}^{n} K_{\sigma}(x^*, x_i) y_i}{\sum_{i=1}^{n} K_{\sigma}(x^*, x_i)}$ kernel function $K_{\sigma}(x^*, x_j) = \exp(\frac{-1}{2\sigma^2} ||x^* - x_j||^2)$ X: brightness temperature Y: precipitation intensity When the bandwidth σ is large, Gaussian the variance becomes smaller but distribution the error becomes larger. $\sigma \gg$ $\sigma \ll$

1 hour accumulated precipitation (resolution 2km x 2km) Estimated Observed

Tendency of estimates to be underestimates

HiDREDv2

(HIMAWARI Data Rainfall Estimation using Deep learning ver.2)

Loss function design

Radar refrectivity(dBz

reflex factor

(observation)

4 Method 1 (Comparison of training data and model)

圖

4 Result

44 Result

Comparison of each satellite precipitation and radar precipitation

45 Method 2 (Creating an original model)

48 Results of rainfall estimation 1

Radar rainfall (ground truth)

Estimated result by HiDREDv2

49 Rainfall estimation results 2

4-day hyetograph

50 Applying deep learning models to other countries

51 Short-term weather forecast system using satellite rainfall

Significant lack of weather forecasts

Heavy rain situation Photographer

Roads on Koh Samui in southern Thailand flooded due to heavy rain(kyodo)

Satellite rainfall using HiDREDv2 Existing precipitation nowcasting method or deep learning apply

The goal Development of satellite rainfall products that can be used as quantitative values for water disaster prediction in the Asia-Pacific region

Message

- Current issues in typhoon forecasting
- Goodness of machine learning approaches such as deep learning as well as physical approaches
- Please see the Hydrological Research Letters (Fujimoto and Tebakari, 2023)
- Even if the forecast is not a 100% probability forecast, it can estimate a 70-80% probability forecast or the actual amount of rainfall.